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“Se eu vi mais longe,

foi por estar sobre ombros de gigantes.”

(Isaac Newton)





RESUMO

NATALI, P. H. R.. Predição espaço-temporal de eventos usando redes neurais convolucio-
nais para grafos. 2021. 45 f. Monografia (Graduação) – Instituto de Ciências Matemáticas e de
Computação (ICMC/USP), São Carlos – SP.

Eventos observáveis no mundo real são muitas vezes formados por uma série de fatores distintos
de áreas diferentes. Com a grande quantidade de dados disponíveis, uma das maneiras de realizar
análises desses eventos é a partir de sensores textuais. Um exemplo recente são os sensores
relacionados aos eventos de COVID-19. Nesse caso, cada sensor é responsável por classificar e
monitorar eventos específicos dentro de um conjunto de dados. Um método para realização da
análise temporal é a predição de tendências envolvendo a ocorrência de eventos, que pode ser
realizada por meio de métodos de regressão, especialmente com uso de aprendizado de máquina
para predição em séries temporais. No entanto, estudos recentes indicam que os eventos podem
estar relacionados também espacialmente, ou seja, um ou mais sensores de eventos podem estar
relacionados geograficamente. Como solução para desafios desse tipo, novos algoritmos foram
propostos para lidar com predição espaço-temporal. Nesse sentido, um método investigado
neste projeto é o STGCN (Spatio-Temporal Graph Convolutional Networks), que representa
um conjunto de sensores por meio de grafos. Dessa forma, este trabalho visa a avaliação do
STGCN para predição espaço-temporal em bases de eventos. Nessa avaliação é explorado um
conjunto de eventos extraídos de notícias sobre COVID-19, organizados em mais de 200 sensores
(subtemas). Para verificar o impacto da estrutura do grafo e informações geográficas, o STGCN
foi comparado com o método Prophet, proposto pela equipe de pesquisadores do Facebook para
predições de séries temporais. O trabalho apresenta como conclusão a importância em considerar
informações geográficas na análise de eventos, em especial, na predição espaço-temporal de
eventos. Além da comparação entre os modelos, o projeto finaliza apresentado um repositório de
código-fonte aberto para realizar análise de eventos via STGCN e Prophet de forma simplificada.

Palavras-chave: Predição Espaço-Temporal, Redes Neurais Convolucionais, STGCN, Prophet,
COVID-19.





ABSTRACT

NATALI, P. H. R.. Predição espaço-temporal de eventos usando redes neurais convolu-
cionais para grafos. 2021. 45 f. Monografia (Graduação) – Instituto de Ciências Matemáticas e
de Computação (ICMC/USP), São Carlos – SP.

Observable events in the real world are often formed by a number of distinct factors from
different fields. With the large amount of data available, one of the ways to carry out an analysis
of these events is from textual sensors. A recent example is sensors related to COVID-19 events.
In this case, each sensor is responsible for classifying and monitoring specific events within
a dataset. One method for performing temporal analysis is the prediction of trends involving
the occurrence of events, which can be performed using regression methods, especially with
the use of machine learning for prediction in time series. However, recent studies indicate that
events may also be spatially related, that is, one or more event sensors may be geographically
related. As a solution to such challenges, new algorithms have been proposed to deal with
spatiotemporal prediction. In this sense, a method investigated in this project is the STGCN
(Spatio-Temporal Graph Convolutional Networks), which represents a set of sensors through
graphs. Thus, this work aims to evaluate the STGCN for spatiotemporal prediction in event
databases. This evaluation explores a set of events extracted from news about COVID-19,
organized in more than 200 sensors (sub-themes). To verify the impact of graph structure and
geographic information, STGCN was compared with the Prophet method, proposed by the
Facebook research team for time series predictions. The work presents as a conclusion the
importance of considering geographic information in the analysis of events, especially in the
spatiotemporal prediction of events. In addition to comparing the models, the project ends up
presenting an open source repository to perform event analysis via STGCN and Prophet in a
simplified way.

Key-words: Spatiotemporal Forecast, Convolutional Neural Networks, STGCN, Prophet,
COVID-19.
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Capítulo 1

INTRODUÇÃO

1.1 Motivação e Contextualização
Eventos observáveis no mundo real são muitas vezes intercalados por uma série de

fatores distintos de áreas diferentes (CHEN; LI, 2020). Uma crise financeira em um país, por
exemplo, pode ocorrer devido a fatores relacionados com política, economia, sociedade dentre
outras áreas (RADINSKY; HORVITZ, 2013). Com a grande quantidade de dados disponíveis,
uma das maneiras de realizar uma análise de eventos é a partir de sensores textuais (HATTORI,
2012; MARCACINI et al., 2017; MARCACINI; CARNEVALI; DOMINGOS, 2016; SANTOS
et al., 2020). Esses sensores são modelos que monitoram e classificam eventos extraídos de
fontes públicas da web, incluindo também etapas de pré-processamento dos dados para identificar
informações geográficas, temporais, pessoas e organizações. Assim, um conjunto de sensores
pode mapear temas correlacionados. Cada sensor representa eventos de um subtema, mapeando
assim as informações por meio de métricas específicas, como a frequência de eventos ao longo
do tempo e locais de ocorrência (RADINSKY; DAVIDOVICH; MARKOVITCH, 2012; CHEN;
LI, 2020).

Um exemplo recente são os sensores relacionados aos eventos de COVID-19. Nesse
caso, cada sensor é responsável por classificar e monitorar eventos específicos dentro de um
conjunto de dados. Exemplos de eventos são esforços pela aquisição e aplicação de vacina,
distanciamento social, impactos econômicos, dentre outros. Na Figura 1 é ilustrado um exemplo
de eventos extraídos de notícias obtido da plataforma Websensors-Covid19, em que os eventos
são coletados, classificados em um dos sensores (de acordo com o tema), e organizados em um
mapa (TUNES, 2020).

Além da organização do conjunto de eventos disponíveis em temas e subtemas, é im-
portante analisar a evolução temporal desses subtemas para determinadas regiões. Com isso,
sensores geram séries temporais que podem indicar tendências de ocorrência de um conjunto
de eventos para um determinado subtema. Para exemplificar, na Figura 2 é ilustrado uma série
temporal para um sensor que foi treinado com eventos sobre “anti vaxxers”. Para este sensor, por
exemplo, outros eventos da coleção são identificados por meio de uma medida de similaridade
(e.g. similaridade cosseno e estratégia de vizinho mais próximo), indicando a ocorrência desse
subtema (similaridade média) ao longo do tempo1.
1 Exemplo construído com eventos da base GDELT, no período de Outubro de 2019 até Maio de 2021
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Figura 1 – Exemplo de eventos sobre Covid-19 extraídos da plataforam Websensors.

Fonte: Tunes (2020)

Figura 2 – Evolução temporal de eventos classificados no sensor “anti vaxxers”. Eventos coletados da base GDELT
no período de Outubro de 2019 até Maio de 2021.

Fonte: Dados do projeto

A análise temporal de conjuntos de eventos é uma área de estudo que vêm recebendo
destaque nos últimos anos (ZHAO et al., 2015; MARCACINI; CARNEVALI; DOMINGOS,
2016; NING et al., 2019; CHEN; LI, 2020). A predição de tendências envolvendo a ocorrência
de eventos pode ser realizada por meio de métodos de regressão, especialmente com uso de
aprendizado de máquina para predição em séries temporais (PARMEZAN; SOUZA; BATISTA,
2019). No entanto, estudos recentes indicam que os eventos podem estar relacionados também es-
pacialmente, ou seja, um ou mais sensores de eventos podem estar relacionados geograficamente
(NING et al., 2019). Como solução para desafios desse tipo, novos algoritmos foram propostos
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para lidar com predição espaço-temporal (YU; YIN; ZHU, 2018; NING et al., 2019; MIN et al.,
2021). A ideia geral é explorar matrizes de distância espacial entre os sensores, conforme sua
localização, junto com as respectivas séries temporais (e.g. provenientes de sensores).

Nesse sentido, um método investigado neste projeto é o STGCN (Spatio-Temporal Graph

Convolutional Networks) (YU; YIN; ZHU, 2018), que representa um conjunto de sensores por
meio de grafos. Cada vértice do grafo é um sensor. A série temporal do sensor é representada
como um vetor de características associado ao vértice. A informação de distância geográfica,
por sua vez, é representada por meio de pesos nas arestas entre vértices. A vantagem dessa
modelagem é treinar modelos de predição usando Graph Convolutional Networks (GCNs)
(SCHLICHTKRULL et al., 2018), na qual são exploradas dependências espaciais do grafo,
ou seja, as relações de vizinhança entre vértices, além dos vetores de características (séries
temporais). Esse tipo de abordagem têm sido utilizado com sucesso para aplicações similares,
por exemplo, envolvendo sensores na área de transporte público (YU; YIN; ZHU, 2018), análise
de epidemias (KAPOOR et al., 2020), e violência urbana (MIN et al., 2021). Resultados
promissores nesses domínios motivou a avaliação desse método para predição espaço-temporal
envolvendo bases de eventos.

1.2 Objetivo
O objetivo principal deste trabalho é avaliar o método STGCN (Spatio-Temporal Graph

Convolutional Networks) para predição espaço-temporal em bases de eventos. Nessa avaliação
é explorado um conjunto de eventos extraídos de notícias sobre COVID-19, organizados em
mais de 200 sensores (subtemas). Para verificar o impacto da estrutura do grafo e informações
geográficas, o STGCN foi comparado com o método Prophet (TAYLOR; LETHAM, 2017),
proposto pela equipe de pesquisadores do Facebook para predições de séries temporais. Para
atingir esse objetivo principal, foram propostos os seguintes objetivos específicos:

• Avaliar os parâmetros do método STGCN proposto por Yu, Yin e Zhu (2018) no contexto
de predição espaço-temporal de eventos;

• Avaliar o método Propheta (TAYLOR; LETHAM, 2017) para predição de séries temporais
construídas a partir de bases de eventos;

• Desenvolver e disponibilizar um repositório de código aberto para uso do STGCN em
análise de eventos.

1.3 Organização
No Capítulo 2 é apresentada uma introdução aos fundamentos de séries temporais,

delimitando seus principais componentes. Além disso, demonstra como é feita a análise e
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predição nas séries. O capítulo apresenta conceitos de redes neurais, convolução em grafos,
predição de séries temporais de negócios, métodos indicadores de erro e por fim demonstra os
critérios de avaliação que serão utilizados para a comparação dos resultados.

O Capítulo 3 é responsável pelo desenvolvimento do projeto, ou seja, é feita a descrição
do problema proposto, demonstra as atividades realizadas, os resultados obtidos e por fim as
dificuldades e limitações do projeto.

Finalmente, o Capítulo 4 apresenta as conclusões sobre os resultados demonstrados, as
contribuições que podem ser feitas em trabalhos futuros e uma análise sobre o curso de graduação
em relação ao projeto.
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Capítulo 2

MÉTODOS, TÉCNICAS E TECNOLOGIAS
UTILIZADAS

2.1 Fundamentos de Séries Temporais

Séries temporais são compostas por um conjunto de dados igualmente (séries regulares)
ou não (séries irregulares) espaçados no tempo (HAMILTON, 2020). Tratam-se de observações
sequenciais onde a ordem faz diferença. Ou seja, em séries temporais há uma dependência
na ordem explícita em que os eventos ocorrem, diferente de conjuntos de dados mais comuns
utilizados para predição, em que cada evento é tratado igualmente perante os outros, sem um fator
de dependência relacionado à ordem de ocorrência (PARMEZAN; SOUZA; BATISTA, 2019).
As séries por sua vez podem ser uni-variadas - quando somente uma variável está presente - ou
multivariada, no caso em que duas ou mais variáveis estão presentes no conjunto. Formalmente,
uma série temporal temporal Z de tamanho m é definida por Z = (z1,z2, ...,zm), onde zt ∈ R
representa uma observação z no instante de tempo t (BONTEMPI; TAIEB; BORGNE, 2012).

Os conjuntos de dados que compõem as séries temporais, por sua vez, podem ser
determinísticos - quando há a possibilidade de determinação de uma função matemática em
relação ao tempo. Ou ainda, estocástica (não-determinística), quando para que seja possível
modelar a função, seja necessário incluir um termo aleatório (ruído) (PARMEZAN; SOUZA;
BATISTA, 2019). Além disso, podemos também caracterizar tais conjuntos como discretos
e contínuos, dependendo do espaçamento descrito pelas observações da série. Por fim, uma
série temporal pode ser também classificada como estacionária, quando no tempo ocorre um
desenvolvimento em torno de uma média constante. Para a realização de análises sobre os dados
encontrados para uma série, utilizam-se os conceitos abordados até agora, porém com a ajuda
dos componentes principais de uma série temporal, sendo eles a tendência, a sazonalidade e o
resíduo (HAMILTON, 2020).

2.1.1 Decomposição de uma Série Temporal

Uma série temporal pode ser decomposta a fim do melhor entendimento de seus eventos
em três principais componentes (note que não é obrigatório para uma série apresentar todos
os três componentes). São eles a tendência (movimento desenvolvido ao longo da série), a
sazonalidade (comportamento que se repete em períodos específicos de tempo) e o resíduo
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(comportamentos gerados devido a eventos aleatórios). Sua decomposição pode ocorrer de
modo aditivo, onde a série temporal é representada pela soma dos três termos, ou ainda de
modo multiplicativo, onde a série é representada pela multiplicação dos termos de modo que a
tendência apresenta a mesma unidade da série e os demais componentes apenas modificam a
tendência.

2.1.1.1 Tendência

A tendência de uma série temporal pode ser definida como o padrão de crescimento da
variável analisada em um período de tempo. Fatores que podem causar tendência são variados,
dentre eles o aumento no uso de tecnologias, aumento da população (e por sua vez, no consumo),
entre outros. Os tipos de crescimento que uma tendência pode apresentar são o crescimento
linear, onde a taxa de crescimento é constante, o crescimento exponencial, onde as taxas de
crescimento respeitam uma função exponencial, e por fim o crescimento amortecido, onde a
taxa de crescimento é negativa. Com a tendência encontrada, torna-se possível retirá-la da série
temporal para realçar os outros componentes, realizar a análise do seu comportamento para
integrar um modelo preditivo, ou ainda determinar o nível (valor que a variável tende a assumir
caso não ocorra uma tendência crescente ou decrescente) da série.

Um exemplo claro de uma tendência é o crescimento populacional. Se analisarmos o
crescimento da população no Brasil de 1800 até 2000 na Figura 3, fica claro que a tendência
é uma exponencial crescente. A tendência assim é o comportamento constante que ocorre a
longo prazo. Outros exemplos podem ser notados em investimentos, onde um ativo pode oscilar
ao longo do tempo, porém apresenta um comportamento linear (ou exponencial) crescente
ou decrescente. A identificação da componente de tendência em séries temporais depende de
um período de observação. Por exemplo, embora seja possível identificar a tendência para um
determinado período de tempo, essa componente pode mudar drasticamente ao se observar
períodos de tempo maiores — o que torna desafiador o processo de análise de séries temporais.

2.1.1.2 Sazonalidade

A sazonalidade de uma série temporal pode ser definida como um comportamento que
se repete durante diferentes períodos de tempo. Essas variações por sua vez são representadas
por oscilações ao longo da componente de tendência. Exemplos práticos de sazonalidade podem
se dar por conta das estações do ano, causas econômicas e políticas (eleições, por exemplo) ou
ainda eventos que ocorrem a cada período de tempo. Para encontrar a sazonalidade, uma das
técnicas é a análise gráfica, identificando picos e vales regularmente espaçados com magnitude
aproximadamente igual. A componente em questão pode ser categorizada em aditiva, quando a
sazonalidade apresenta uma flutuação estável, sem considerar o nível global da série, ou ainda
em multiplicativa, quando a flutuação varia de acordo com o nível global da série.

Dois exemplos muito claros de sazonalidade podem ser eventos políticos (como eleições)
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Figura 3 – Variação da População do Brasil de 1800 até 2000.

Fonte: Roser e Ortiz-Ospina (2013).

e eventos esportivos (Copa do Mundo ou Olimpíadas, por exemplo). Se analisarmos a Figura 4,
onde o eixo X representa o passar dos anos e o eixo Y representa um índice de interesse relativo
da plataforma Google sobre a pesquisa de termos relacionados a Copa do Mundo no brasil, é
possível ver claramente a presença da sazonalidade no aumento do índice a cada quatro anos.
Ainda, é possível analisar comportamentos relativamente semelhantes a um resíduo (próximo
conceito a ser abordado) em 2020 ou em 2006 (cuja pesquisa obteve índices maiores que o
normal no Brasil devido ao jogo icônico contra a seleção da França).

Figura 4 – Índice de interesse relativo de pesquisa sobre a Copa do Mundo no Brasil de 2004 até 2021.

Fonte: Adaptada de Google Trends (www.google.com/trends).
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2.1.1.3 Resíduo

O resíduo de uma série temporal pode ser definido como o restante da série após a
remoção dos componentes sistemáticos, ou seja, aqueles que podem ser definidos por funções
determinísticas no tempo - ou ainda - a sazonalidade e a tendência. Resíduos podem ocorrer
por diversos fatores, como desastres naturais, acidentes, ou acontecimentos que não se repetem
de maneira regular. E por sua vez, devem ser identificados para que seja possível remover sua
componente da série temporal e realizar assim uma análise mais concisa.

Como explicado anteriormente, eventos incomuns podem causar resíduo na análise de
séries temporais. Um exemplo relativamente simples é o disposto na Figura 5, onde o eixo X
representa o passar dos anos e o eixo Y representa um índice de interesse relativo da plataforma
Google sobre a pesquisa de termos relacionados à Osama Bin Laden. Note que o índice apresenta
valores baixos durante sua totalidade, porém em 2011 há um pico. Isso pois em 2 de maio de
2011 a missão nos arredores de Abbottabad (cidade no Paquistão) ocorreu, onde o governo
americano divulgou que Bin Laden teria sido capturado e morto no seu esconderijo. Um outro
ponto que seria considerado como resíduo, porém não há dados na plataforma analisada, é 2001,
devido ao ocorrido nas Torres Gêmeas. Note assim que o resíduo é um comportamento incomum,
e como citado, pode ser causado por eventos relacionados ao terrorismo, desastres naturais, ou
os mais variados tipos de situações, positivas ou negativas.

Figura 5 – Índice de interesse relativo de pesquisa sobre Osama Bin Laden no Brasil de 2004 até 2021.

Fonte: Adaptada de Google Trends (www.google.com/trends).

2.2 Análise e Predição em Séries Temporais
Para realizar a análise de uma série temporal, a decomposição descrita nos capítulos ante-

riores é muito útil. Isto porque permite observar comportamentos que podem ser independentes
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entre si de forma clara. Porém além da análise, séries temporais apresentam grande utilidade
devido às técnicas estatísticas de predição.

Dentre as técnicas mais comuns utilizadas para predição de dados, pode ser citada a
regressão. Trata-se de um processo matemático que relaciona variáveis dependentes (resposta)
com variáveis independentes(explicativas) para encontrar um padrão - ou ainda, justificativa -
para a variação da variável resposta dependendo do nível das variáveis explicativas. Sua fórmula
está descrita na Equação 2.1 onde α é uma constante, β representa a inclinação em relação à
variável independente, Xi é a variável independente, yi é a variável explicada e εi representa o
resíduo (PARMEZAN; SOUZA; BATISTA, 2019).

yi = α +βXi + εi (2.1)

Aplicando o método de regressão linear ao exemplo abordado na Figura 3 é possível
chegar ao resultado da Figura 6, onde o resultado é traduzido de forma linear e aproximado na
linha vermelha e a linha azul representa o crescimento populacional no Brasil do ano 1800 até
2000.

Figura 6 – Regressão linear aplicada ao conjunto de dados da população do Brasil.

Fonte: Adaptada de Roser e Ortiz-Ospina (2013).

Contudo, a utilização de modelos relativamente mais simples como regressão não são
uma boa escolha para a predição de qualquer tipo de dado. Dados com estruturas mais complexas
pedem por algoritmos e métodos mais robustos. Com isso, por volta da década de 40, cientistas
começaram a tentar replicar as ideias de aprendizado do cérebro humano, e com isso, os
primeiros artigos sobre redes neurais artificiais começaram a surgir (MCCULLOCH; PITTS,
1943). Porém só em 1986, com a criação do algoritmo de backpropagation, as ideias ficaram
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popularmente conhecidas e foram amplamente estudadas e desenvolvidas (RUMELHART;
HINTON; WILLIAMS, 1986).

Uma Rede Neural Artificial (RNA) é uma abstração e simplificação dos conceitos
envolvidos em neurônios biológicos. Partindo de sua unidade funcional, o cérebro é composto
de células, chamadas de neurônios. Ela é composta por 3 estruturas principais: dendritos, corpo
celular e axônios. Uma representação pode ser vista na Figura 7.

Figura 7 – Ilustração da morfologia geral do neurônio e de seus componentes, apresentando o sentido de condução
(impulso nervoso) da informação, da recepção (corpo celular e dendritos) a transmissão (ramificações do
axônio).

Fonte: Dechichi, Ferreira e Silva (2013).

A comunicação entre os neurônios ocorre por meio das sinapses, passando o impulso
nervoso de uma célula para outra como visto na Figura 8. Essa passagem de informações permite
a ativação e desativação de regiões do cérebro, permitindo que seja possível realizar diversas
ações, como aprender, falar e correr.

Em virtude disso, a RNA surge com o propósito de desenvolver um modelo matemático,
baseado nas características do sistema nervoso, que possa aprender e resolver problemas por
meio de reconhecimento de padrões. Assim como o cérebro humano, a RNA possui uma unidade
funcional, o neurônio artificial. Segundo Haykin (2007), ele pode ser caracterizado por possuir a
seguinte estrutura: entradas (xi), pesos (wi), bias (b), função soma (Σ), função de ativação (F)
e saída (y), como pode ser visto na Figura 9. Simulando o sentido do fluxo da informação, as
entradas ao entrarem no neurônio são ponderadas com os seus respectivos pesos na função soma
formando u = ∑xiwi. Após essa etapa é acrescentada a bias, tendo u+b. Essa sendo a entrada da
função ativação, a qual, por meio de uma função linear ou não-linear calcula a saída y = F(u+b)

do neurônio, sendo normalmente representada em um intervalo unitário fechado [0,1] ou [-1,1]
(HAYKIN, 2007). Como exemplo de funções de ativação, temos a função degrau unitário e a
função logística sigmoidal.

A primeira ideia de RNA, foi desenvolvida por Frank Rosenblatt em 1957, nomeada de
perceptron, ela era formada por uma camada contendo um único neurônio e tinha o pretexto



2.2. Análise e Predição em Séries Temporais 25

Figura 8 – Ilustração evidenciando um contato entre neurônios (sinapse), no qual ocorre a transmissão da informação
por meio de mediadores químicos (neurotransmissores).

Fonte: Dechichi, Ferreira e Silva (2013).

Figura 9 – Modelo de um neurônio artificial

Fonte: Elaborada pelo autor.

de classificador linear. Devido às suas limitações, foram propostas as Rede Neurais Multilayer

Perceptron (MLP). Para formá-la, os neurônios são ligados de forma a caracterizar a espécie de
rede com mais de uma camada, podendo formar dois tipos de arquiteturas: as sem realimentação
e as com realimentação.

Serão descritas as arquiteturas com realimentação, pois são utilizadas nesse projeto.
A Figura 10 demonstra uma rede neural recorrente (RNR), onde a saída de alguns neurônios
podem alimentar neurônios anteriores ou o próprio. A estrutura de camada é dividida entre três
subdivisões: camada de entrada, contendo os primeiro conjunto de neurônios, a camada saída, o
último conjunto de neurônios responsáveis pelos resultados, e a camada oculta , que compreende
todas as camadas entre a de entrada e de saída.

A capacidade de aprendizado do neurônio está na possibilidade de alteração dos pesos,
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Figura 10 – Modelo de MLP recorrente

Fonte: Elaborada pelo autor.

os quais são modificados por meio do treinamento. Para realizar o treinamento é necessário um
grande conjunto de dados com o propósito de representar as características do problema. Um
algoritmo muito utilizado para o treinamento é o backpropagation (RUMELHART; HINTON;
WILLIAMS, 1986), o qual utiliza do aprendizado supervisionado, de forma a minimizar o erro
entre o resultado real e esperado.

Com a evolução da pesquisa de redes neurais e sua utilização, novas técnicas mais
robustas foram implementadas, pensando nos casos mais específicos do mundo real. Assim, os
métodos que foram utilizados neste trabalho apresentam características em comum com as redes
neurais propostas na seção atual, porém são robustos e apresentam o estado da arte em suas
respectivas áreas de objetivo.

2.3 Spatio-Temporal Graph Convolutional Networks

2.3.1 Convolução em grafos

Grafos estão dentre as estruturas mais utilizadas em aprendizado de máquina, devido ao
fato de que muitos problemas do mundo real são apresentados naturalmente por meio de grafos,
como redes sociais. Muitos projetos vêm sendo desenvolvidos nessa área. Por exemplo, em Fan
et al. (2019) os autores utilizam de redes neurais para grafos para predição de recomendações
sociais. Li, Cai e He (2017) apresentam outro modelo baseado em grafos para predição de
moléculas e análise em datasets ligados à componentes tóxicos e doenças. Também vale destacar
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estudos que exploram aprendizado de representações para grafos (ZHANG et al., 2018), em que
são obtidas embeddings, ou vetores de características, para os vértices do grafo considerando a
topologia da rede.

No escopo desse projeto, há interesse em redes neurais convolucionais baseadas em
grafos (GCNNs), que visam aprender uma função baseado no sinal ou característica (no caso
deste trabalho, as séries temporais) em um grafo G = (V,E) definido por uma entrada tal qual
existe um atributo descrito (série) xi para cada nó vi ∈ V , formando assim uma matriz X de
atributos com dimensão N×D, onde N representa o número de nós (ou sensores) e D o número
de atributos de entrada (observações das séries temporais). Além disso, outro componente de
entrada é uma representação da estrutura de um grafo em forma de matriz, normalmente em
forma de uma matriz A de adjacências (KIPF; WELLING, 2016).

O resultado do modelo descrito acima é um componente Z, que é uma matriz N×F ,
onde F representa a dimensão do vetor de características aprendido pela rede neural para os
vértices da rede. Dessa forma, cada camada da rede neural pode ser escrita de acordo com uma
função não linear formulada na Equação 2.2, com H(0) = X e H(L) = Z e L representando o
número de camadas. Com isso, modelos específicos diferem na forma em que essa equação é
escolhida e parametrizada.

H(l+1) = f (H(l),A) (2.2)

Uma formulação proposta por Kipf e Welling (2016) é apresentada na Equação 2.3, onde
W (l) representa a matriz de pesos para a camada l da rede neural, A é a matriz de adjacências e
σ é uma função não linear de ativação como uma ReLU - ou retificador.

f (H(l),A) = σ(AH(L)W (L)) (2.3)

Em geral, os dados presentes em grafos não são estruturados, nem euclidianos, difi-
cultando assim a construção de modelos de aprendizado de máquina. Graph Neural Networks

(GCNs) servem para generalizar estruturas clássicas de redes neurais convolucionais para o
caso de dado estruturado por meio de grafos (CASALEGNO, 2021). Na prática, o objetivo é
adicionada uma última camada de neurônios e uma função de ativação que permite ajuste de
toda rede via backpropagation, como para tarefas de classificação ou regressão. A etapa de
convolução da rede neural explora a estrutura do grafo e extrai características de alto nível que é
utilizada como entrada para a etapa de classificação ou regressão (KIPF; WELLING, 2016).

Redes neurais convolucionais oferecem uma arquitetura eficiente para a extração de
padrões estatísticos significantes de conjuntos de dados robustos. Isso devido a sua habilidade de
aprendizado de propriedades locais da entrada dos dados, revelando padrões que são comparti-
lhados pelo domínio dos dados em questão (DEFFERRARD; BRESSON; VANDERGHEYNST,
2017).
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2.3.2 Modelo e Predição

O modelo presente em Yu, Yin e Zhu (2018), avaliado neste projeto, é denominado
de STGCN (Spatio-Temporal Graph Convolutional Networks). Sua arquitetura é composta
por blocos de convolução espaço-temporais. Cada um desses blocos apresenta uma estrutura
onde dois blocos de convolução temporais envolvem um terceiro bloco de convolução espacial.
Originalmente, o STGCN propõe o uso de redes espaço-temporais para analisar e prever dados
de tráfego de rodovias em situações reais.

O uso de redes que dependem de grafos para o problema proposto no artigo é lógico,
visto que redes de tráfego podem naturalmente ser modeladas por meio de grafos, na qual os
vértices representam sensores que dão dados de movimentação dos veículos. O ponto chave
demonstrado por Yu, Yin e Zhu (2018) foi a importância da análise espaço-temporal entre os
sensores que em muitos trabalhos relacionados foi desconsiderada. Assim, as convoluções em
grafos são utilizadas para extração de padrões significantes no domínio espacial. A utilização de
uma rede neural convolucional permite vantagem quando comparado a redes neurais tradicionais,
devido aos treinamentos que podem ser realizados mais rapidamente, com estrutura simples e
sem dependência de passos anteriores.

Na prática, o STGCN pode ser considerado um framework universal para processar um
conjunto de séries temporais representadas por sensores, em que há uma matriz de distâncias
entre esses sensores.

O STGCN foi avaliado em dois conjuntos de dados, um de Beijing e outro da Califórnia,
com dados de fluxo de tráfego junto com informações geográficas sobre sua localização. O
intervalo utilizado para a observação dos dados foi de 5 minutos. Interpolação linear foi utilizada
para preencher valores faltantes após limpar os dados. Por fim, os dados foram manipulados à
partir da normalização pelo método Z-score.

O método Z-score é baseado em uma variável x que segue uma distribuição normal.
Assim, é feita a relação entre um ponto, ou score com sua média e desvio padrão à partir da
Equação 2.4. Um ponto negativo desse método é exatamente o fato da influência da média e
desvio padrão, assim, indiretamente é influenciável por outliers, ou seja, pontos com valores
muito diferentes da média - ou ainda, ruído.

ZScore = (x−µ)/σ (2.4)

O STGCN aprende os pesos da rede neural por meio de um problema de minimização de
erro de valores futuros dos sensores de entrada, usando para isso o erro quadrático médio entre o
valor predito e o valor real (RMSE). O RMSE é a raiz do erro quadrático médio, e sua fórmula é
descrita em Equação 2.5, onde At corresponde ao valor real, Ft é o valor predito e n representa a
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quantidade de pontos que foram preditos.

RMSE =

√
1
n

n

∑
t=1

(Ft−At)2 (2.5)

Além do RMSE, outras duas medidas podem ser utilizadas: MAE e MAPE. O MAE

corresponde a média absoluta dos erros, assim, sua fórmula é descrita na Equação 2.6, onde At

corresponde ao valor real, Ft é o valor predito e n representa a quantidade de pontos que foram
preditos.

MAE =
1
n

n

∑
t=1
|At−Ft | (2.6)

Já o MAPE corresponde à média absoluta percentual dos erros. Sua fórmula pode ser
vista em Equação 2.7 onde At corresponde ao valor real, Ft é o valor predito e n representa a
quantidade de pontos que foram preditos.

MAPE =
1
n

n

∑
t=1

|At−Ft |
At

(2.7)

Discussões mais detalhadas sobre os métodos no contexto desse projeto para avaliação
do STGCN são feitas nas seções do Capítulo 3.

Por fim, vale destacar que como resultado obtiveram um treinamento até 14x mais rápido
que métodos utilizando redes neurais recorrentes tradicionais. E quando comparado com diversos
métodos de previsão apresentou a melhor performance (menor erro) nas métricas analisadas.

O trabalho proposto nesta monografia utiliza do STGCN e faz sua comparação com um
modelo onde as distâncias entre sensores não são consideradas (métodos tradicionais). Esse
modelo será apresentado na próxima seção e utiliza conceitos de predição de séries temporais de
negócios.

2.4 Business Time Series Prediction

O modelo Prophet proposto em Taylor e Letham (2017) é utilizado como um modelo de
referência para comparação com o STGCN, visto que sua entrada de dados é somente a série
temporal, não utilizando assim as matrizes de distância entre os sensores.

O Prophet foi proposto em 2017 pelo Facebook e baseia-se em ideias de predição de
séries temporais de negócios, levando em consideração assim que o conjunto de dados pode
ser complexo, com componentes de sazonalidade presentes de diferentes maneiras e com a
presença de ruído. Também teve seu design pensado para apresentar parâmetros intuitivos que
podem ser ajustados sem muito conhecimento do modelo abordado. Na prática, incorpora no
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modelo informações que podem afetar a análise de eventos, como finais de semana, feriados,
entre outros.

O modelo constrói uma função em relação à tendência, sazonalidade, um termo especial
para delimitar a presença de feriados e, por fim, ruído. A função que determina o modelo
permite a acomodação de sazonalidade com múltiplos períodos. As observações das séries não
precisam ser regularmente espaçadas e as interpolações não são necessárias para preencher
valores vazios. Dentre suas vantagens, também apresenta uma etapa de treinamento rápida,
permitindo a exploração de grandes bases de dados.
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Capítulo 3

DESENVOLVIMENTO

3.1 Descrição do Problema

A importância dos algoritmos de predição para o mundo moderno é significativa. Nos
últimos anos, uma série de modelos temporais, espaciais e causais foram desenvolvidos para lidar
com os aspectos complexos de predição para eventos reais da sociedade baseados em estruturas
espaço-temporais. Em Kapoor et al. (2020) é proposto um modelo chamado de Spatio-Temporal

Graph Neural Networks (STGNNs) para entender a propagação e evolução do COVID-19. Min
et al. (2021) propõe um modelo chamado Spatial-Temporal Graph Social Network (STGSN) que
modela as redes sociais tanto na perspectiva temporal quanto espacial, e apresenta uma estrutura
robusta que foi idealizada para análise de redes criminais. Por fim, outro modelo é proposto em
Jain et al. (2016), onde é feita uma junção das características de uma Rede Neural Recorrente
(RNR) adaptando assim para o uso de grafos, criando uma Rede Neural Recorrente Estruturada
(SRNR).

A necessidade dessas estruturas se dá pelo fato da correlação existente entre um evento
observado e uma série de parâmetros que os causam. Ou seja, em vários casos reais existem
múltiplos sensores de eventos observáveis, e esses sensores influenciam na predição um do outro,
necessitando assim de métodos mais robustos que tem a capacidade de lidar com essa correlação.

Um fator que permitiu esse avanço na pesquisa dessas estruturas de predição é a grande
quantidade de dados - Big Data - de indicadores de código aberto, ou OSI (do inglês, Open

Source Indicators), como notícias, indicadores econômicos, redes sociais e várias outras fontes.
Assim, a predição de eventos sociais que dependem do espaço e do tempo conseguem prover
observações e análises interessantes sobre doenças, economia, política, processos migratórios,
etc.

Devido à grande presença de dados presentes na internet como um todo, uma série de
algoritmos surgiram para utilização de técnicas de web-crawling. E com isso realizar o pré-
tratamento dos dados através de modelos estatísticos e linguagem natural. Em Hattori (2013), por
exemplo, é proposto um modelo que cria sensores web para coletar informações de fenômenos
físicos a partir de valores numéricos espaço-temporais.

Este projeto utiliza dos sensores de texto presentes em Marcacini et al. (2017), onde é
proposto um modelo baseado em web-crawling que utiliza os dados pré-processados por meio de
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categorias ligadas à informações geográficas, temporais, de nome e organizações para realizar a
divisão em temas. Esses temas são por sua vez correlacionados através das características citadas,
em que eventos similares podem ser organizados em grupos. E assim é realizada a criação de
alertas para os sensores, em que novos eventos similares a um grupo podem ativar um sensor.

A predição espaço-temporal de eventos utiliza de informações heterogêneas, como textos,
datas e informação geográfica, o que torna um desafio (NING et al., 2019). Para atender a esse
desafio, neste trabalho é avaliado o STGCN (YU; YIN; ZHU, 2018) - e assim, um modelo espaço
temporal baseado em grafos - e o compara com o Prophet, algoritmo proposto pela equipe do
Facebook que não utiliza da correlação entre os eventos da série temporal para realizar a predição.
Por fim, discorre sobre os aspectos positivos e negativos dos resultados, além de delimitar se o
acréscimo da informação espaço-temporal traz melhorias dos resultados de predição.

3.2 Atividades Realizadas

Como método para encontrar uma solução do desafio descrito, uma arquitetura foi
elaborada utilizando uma estratégia de divisão do problema em quatro grandes passos, assim
como demonstra a Figura 111. A primeira etapa é a entrada dos dados, composta por um conjunto
de sensores representados por respectivas séries temporais, bem como uma matriz de adjacências
que determina a distância entre esses sensores. Depois é feito o aprimoramento dos parâmetros
do STGCN, na qual um conjunto de treinamento, validação e teste é utilizado. Com isso, treina-se
novamente para os parâmetros com melhor desempenho. Finalmente, na última etapa é realizada
a comparação dos resultados do STGCN com os resultados do Prophet.

Figura 11 – Arquitetura proposta pelo autor.

Fonte: Elaborada pelo autor.

No primeiro, os dados de entrada são formados por sensores, suas séries temporais e uma
matriz de adjacências que indica a distância entre os sensores. Para esse projeto, foram avaliados

1 Esta imagem foi criada usando recursos do Flaticon.com
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sensores sobre Covid-19 coletados por meio do projeto Websensors, que analisa eventos da
base GDELT (Global Database of Events, Language, and Tone)2,3. O conjunto de dados é
formado por 21526 eventos georreferenciados por país entre Fevereiro de 2020 até Maio de
2021, organizados em 275 sensores, em que cada sensor é um subtema relacionado à Covid-19.
Na Figura 12 é apresentada a quantidade de eventos em relação ao tempo.

Figura 12 – Total de eventos por período.

Fonte: Elaborada pelo autor.

Cada um dos 275 sensores representa um grupo de eventos, considerando similaridade de
conteúdo e geográfica (país). Na Figura 13 é apresentada uma visão geral da frequência relativa
(normalizada) de eventos distribuídos ao longo dos países. Observe que há maior concentração
de eventos em poucos países, o que reflete a quantidade de notícias disponíveis e acessíveis pelo
GDELT. Foram identificados um total de 16 países com mais de 200 eventos no período.

Para ilustrar, nas Figuras 14, 15 e 16 são apresentados três séries temporais de sensores,
respectivamente sobre desenvolvimento de vacinas, lockdown e distanciamento social. Para cada
sensor, foi selecionado um evento de cada grupo, considerando a similaridade média entre um
eventos e os eventos do seu grupo (centróide do grupo).

O segundo passo diz respeito aos parâmetros do algoritmo STGCN para predição espaço-
temporal de eventos. Uma descrição dos parâmetros pode ser analisada na Tabela 1.

De todos os parâmetros descritos, os mais importantes no sentido de variação para o
algoritmo em questão são a taxa de aprendizado, o número de histórico (o tamanho da janela
deslizante de observações do passado para treinamento do modelo) e o tamanho do lote. Outros
parâmetros não apresentaram espaço para variabilidade, ou apresentaram termos fixos. Um
exemplo é o número de vértices, que deve ser igual ao número de vértices do grafo utilizado.
Outro exemplo de parâmetro que não impactou profundamente nos resultados é o otimizador,
onde a maioria dos modelos utilizados teve resultados semelhantes.

2 <https://www.gdeltproject.org/>
3 <https://blog.gdeltproject.org/university-of-sao-paulo-covid-19-news-dashboard/>

https://www.gdeltproject.org/
https://blog.gdeltproject.org/university-of-sao-paulo-covid-19-news-dashboard/
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Figura 13 – Frequência relativa de eventos por país.

Fonte: Elaborada pelo autor.

Figura 14 – Exemplo de série temporal para sensor sobre eventos de vacinas.

Fonte: Elaborada pelo autor.

O método de execução para aprimorar os parâmetros foi feito a partir do MAE, ou seja,
sempre que uma execução com novos parâmetros consegue em algum dos passos um valor menor
para a métrica analisada, esse novo parâmetro passa a ser o melhor parâmetro. E isso é feito em
todas as iterações até que sejam encontrados os melhores parâmetros.

A escolha do indicador chave de precisão foi feita devido principalmente à escala do
problema. Os dados preditos apresentam valores muito pequenos (escala de 10−3). Valores muito
próximos de 0 podem causar problemas no MAPE devido às suas divisões internas, assim, pode
’explodir’ em um valor desproporcional. Algo similar ocorre no RMSE, que apresenta maior
importância para erros mais significantes, ou seja, um único erro muito grande pode causar
problemas na medida da métrica. O MAE, assim, dá igual importância para todo tipo de erro
apresentado (VANDEPUT, 2021).

Com isso, o dataset de sensores que foi citado foi utilizado para prever o penúltimo
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Figura 15 – Exemplo de série temporal para sensor sobre eventos de lockdown.

Fonte: Elaborada pelo autor.

Figura 16 – Exemplo de série temporal para sensor sobre eventos de distanciamento social.

Fonte: Elaborada pelo autor.

elemento do conjunto (o penúltimo valor real que sabemos), como em uma estratégia de organiza-
ção por conjunto de treinamento e validação. Isso foi feito para estimar os melhores parâmetros.
A estratégia utilizada de estimação de parâmetros seguiu focada na melhora do MAE.

A partir do momento que os melhores parâmetros foram encontrados, é escondido do
algoritmo o último elemento para que seja possível realizar a comparação após a previsão,
representado o conjunto de testes. Assim, utiliza-se da melhor configuração possível para realizar
a execução que será testada contra o Prophet (que segue a mesma divisão de treinamento,
validação e teste). O algoritmo é executado com esses parâmetros descritos e seus resultados são
salvos em um arquivo .csv. As melhores execuções serão demonstradas no próximo capítulo.

O Prophet é executado a partir do dataset final, como a segunda execução do STGCN, e
assim, prevendo o último elementos dos sensores (que é escondido do algoritmo para que ele não
tente prever algo sabendo a resposta). O Prophet é um método competitivo para comparação por
apresentar resultados eficientes para as três métricas apresentadas, além de fácil implementação
e não utilização das matrizes de correlação, realizando a predição a partir da série temporal
unicamente.
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Tabela 1 – Lista de Parâmetros do STGCN e sua Descrição.

Parâmetro Descrição

Número de Vértices Quantidade de vértices presentes no modelo de
grafos.

Número de Histórico Quantidade de eventos que serão considerados para
prever o próximo.

Número de Predições Tamanho da janela de observações utilizado para
treinar a rede neural.

Tamanho do Lote Quantidade de exemplos de treinamento que serão
utilizadas em uma iteração.

Épocas Quantidade de iterações que serão realizadas.

Ordem de Chebyshev Número de componentes reativos necessários para
a montagem do filtro

Kernel de Convolução Temporal Tamanho do kernel de convolução.

Taxa de Aprendizado Taxa em que o algoritmo irá aprender.

Otimizador Nome do otimizador da biblioteca mxnet que será
utilizado.

Fonte: Elaborada pelo autor.

3.3 Resultados

Nas iterações para encontrar os melhores parâmetros, foi possível delimitar a seguinte
resposta demonstrada na Tabela 2.

Tabela 2 – Melhores parâmetros obtidos através da iteração.

Parâmetro Valor

Passo 6

Número de Vértices 275

Número de Histórico 9

Número de Predições 1

Tamanho do Lote 50

Épocas 50

Ordem de Chebyshev 1

Taxa de Aprendizado 10−3

Otimizador Adam

Fonte: Dados da pesquisa.
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Em todas as execuções a taxa de aprendizado menor possível apresentou melhor MAE,
isso já era esperado, visto que ela indica o ritmo em que os pesos são atualizados. Uma des-
vantagem de utilizar taxas de aprendizados baixas é que aumenta o tempo para realização das
execuções.

O Número de Histórico, ou seja, a quantidade de elementos que são analisados para
realizar a predição do próximo foi a maior possível (9) em todos os melhores casos. Não é possível
aumentar esse número devido ao conjunto de teste escolhido e às restrições do algoritmo.

Por fim, o batch size, ou ainda, tamanho do lote apresentou o comportamento mais
variado, em alguns melhores casos com valor 20, outros com 50 e por fim com 100. No melhor
caso descrito, seu valor foi o médio entre os três apresentados.

Para testar a influência direta que os parâmetros que foram iterados para otimização
(tamanho do lote, taxa de aprendizado e número de histórico) apresentam no MAE calculado,
foram realizados novos testes. Os melhores parâmetros foram fixados, e para cada variável de
interesse foi executado dez vezes o STGCN para encontrar média e desvio padrão dos resultados.

Analisando o tamanho do lote, a Figura 17 demonstrou o mesmo que o otimizador,
mostrando assim que a variação não é significativa no resultado de acordo com a variação do
tamanho do lote.

Figura 17 – Variação do MAE de acordo com o tamanho do lote.

Fonte: Dados da pesquisa.

Contudo, as outras métricas apresentaram grande variação de acordo com a variável de
interesse. A Figura 18 demonstra o mesmo que o otimizador, e assim, confirmando que o MAE
diminui conforme o número de eventos observados aumenta. Outra confirmação foi feita com
a Figura 19, onde é possível analisar a importância de taxas de aprendizado menores quando
levado em conta o resultado do MAE.

Portanto conclui-se que é necessário para um modelo como o descrito pelas redes
convolucionais que sua execução se dê pelos melhores parâmetros, e o não cumprimento dessa
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Figura 18 – Variação do MAE de acordo com o número de histórico.

Fonte: Dados da pesquisa.

Figura 19 – Variação do MAE de acordo com a taxa de aprendizado.

Fonte: Dados da pesquisa.

característica implica diretamente em resultados piores para a predição. Isso pois outros modelos
completos como o Prophet utilizam de métricas semelhantes encapsuladas dentro de seus
métodos.

Executando o STGCN para o melhor caso de parâmetros Tabela 2 e o Prophet com os
mesmos conjuntos de dados e condições semelhantes, chegou-se na resposta obtida na Tabela 3.

Tabela 3 – Resultados em função do MAE e RMSE para os métodos avaliados.

Método MAE RMSE

Spatio-Temporal Graph Convolutional Networks 0,008871 0,020007

Prophet 0,017998 0,021134
Fonte: Dados da pesquisa.
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Com isso, é possível notar que os resultados obtidos para o STGCN foram - quando
comparados com o Prophet - duas vezes mais preciso. Isso devido à robustez do modelo que
utiliza das matrizes de correlação para análise espaço-temporal. Já o RMSE, como apresenta
uma maior interferência para erros significantes, resultou em valores semelhantes para ambos
os métodos. O MAPE não foi analisado por apresentar valores muito grandes para ambos os
algoritmos, devido a presença de valores muito próximos de zero que dificultam sua medição.
Ainda assim, esses foram apenas os resultados obtidos para o melhor caso do STGCN. Sem uma
prévia otimização dos parâmetros, em muitos casos o Prophet superou facilmente o algoritmo
espaço temporal.

3.4 Dificuldades e Limitações
Alguns fatores podem ser notados quando se diz respeito às dificuldades e limitações ao

realizar este trabalho. Primeiro, a construção do conjunto de sensores, realizado em colaboração
com outros membros do laboratório, depende de coleta, monitoramento e pré-processamento
de dados textuais dos eventos. É um processo computacionalmente custoso e que está fora do
escopo deste projeto. Assim, esse projeto ficou limitado a avaliar e comparar métodos preditivos
para análise de eventos já representados por meio de sensores.

Uma segunda dificuldade, um pouco mais técnica, foi a adaptação do STGCN. O método
foi proposto inicialmente para análise de sensores em tráfego de rodovias e parte de sua estrutura
interna dependia desse domínio. Foram realizadas adaptações e testes para torná-lo um framework
mais geral. Ainda, também foram realizadas padronizações a respeito de restrições como a
necessidade da igualdade entre os parâmetros de número de eventos históricos e preditos, ou
ainda a utilização de métodos de comparação internos, que não apresentavam a mesma métrica
utilizada no Prophet.

Por fim, houveram dificuldades técnicas em relação à plataforma utilizada para desen-
volvimento, o Google Colab. Isso pois a versão gratuita é pensada para execuções on demand -
interrompendo assim a execução caso leve muito tempo, impedindo assim a execução em muitas
iterações.
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Capítulo 4

CONCLUSÃO

4.1 Contribuições
O trabalho apresenta como conclusão a importância em considerar informações geográ-

ficas na análise de eventos, em especial, na predição espaço-temporal de eventos. Ainda que
métodos baseados apenas nas séries temporais, como o Prophet, apresenta resultados promisso-
res, incorporar uma matriz de adjacências com distâncias geográficas entre os sensores permite
redução dos erros de predição.

No entanto, vale destacar que os resultados do Prophet são positivos, indicando que
trata-se de uma ferramenta viável para a realização da predição. Outro fator que é levado em
conta para o Prophet é sua fácil utilização e baixo custo computacional.

Além da comparação entre os modelos, o projeto finaliza apresentado um repositório de
código-fonte aberto para realizar análise de eventos via STGCN e Prophet de forma simplificada
(NATALI, 2021). Esse é um resultado relevante, facilitando que outros colaboradores e pesqui-
sadores do o Laboratório de Inteligência Computacional (LABIC/USP) tenha uma ferramenta
importante para a execução de predições em redes espaço-temporais baseadas (STGCN) ou não
(Prophet) em grafos.

4.2 Trabalhos Futuros
Novas contribuições que poderiam ser realizadas são o estudo e criação de um novo

modelo convolucional à partir das estruturas pré-existentes para a predição de dados espaço-
temporais. Em especial, mecanismos de atenção (LEE et al., 2019) para Graph Neural Networks

têm obtidos resultados promissores, uma vez que permitem identificar a relevância de estruturas
locais do grafo durante o treinamento. Incorporar mecanismos de atenção no STGCN é uma
direção para trabalhos futuros.

Além disso, é importante realizar experimentos com um maior número de bases de dados.
Os conjuntos de eventos são volumosos e diferentes temas são relevantes, como economia,
saúde, educação, violência pública, entre outros. A partir de um conjunto de dados maior, é
possível análises mais robustas dos parâmetros do STGCN, de forma a melhorar mais ainda a
performance do algoritmo.
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